Various mediators released during pathological pain states contribute to the sensitization and hyperexcitability of nociceptive neurons.

Simulation of somatosensory receptor 4 (SSTR) inhibits nociception in animals, and SSTR knock-out mice have heightened responses to painful stimuli compared with wild-type mice.

SSTR agonists can induce normalization of neuronal excitability, reducing inflammatory and neuropathic pain, and are a novel target for pain therapy.

CNTX-0290 is a human SSTR4 (hSSTR4) agonist under development as an oral analgesic for nociceptive and neuropathic pain.

Mechanism of Action

- **Somatostatin:** An inhibitory peptide that acts via 5 receptor subtypes (SSTR1-5).
- **While most SSTR subtypes are involved in homeostatic hormone regulation, SSTR4 appears to have a functional role in modulating sensory nerve transmission.**
- **SSTR4 has been shown to be localized to axons and cell bodies of dorsal root ganglia neurons in rats; calcium mobilization, and monocytes.**
- **SSTR4 controls nociceptive transmission by modulating multiple pathways in dorsal root ganglia neurons (Figure 1A).**
 - Enhances potassium currents by opening G protein–coupled inward rectifying potassium channels.
 - Decreases calcium currents by inhibition of voltage-gated calcium channels.
 - Blocks transient receptor potential vanilloid-1 and ankyrin-1 channels.

In Vivo Potency and Selectivity

- **CNTX-0290** demonstrated dose-dependent antinociceptive effects in modulating sensory nerve transmission.
 - Moderate species selectivity was identified for human vs macaque monkeys, and humans.
 - Cynomolgus monkey is the proposed nonrodent species for toxicology studies as SSTR4 is not expressed in dogs, pigs, and guinea pigs.

In Vitro Potency and Selectivity

- The affinity of CNTX-0290 to hSSTR1, 2, 3, and 5 is [nM] (Table 1), indicating a favorable selectivity profile.

Preclinical Studies

- CNTX-0290 activates the SSTR4 receptor, leading to normalization of excitability and reduction of synaptic transmission (Figure 1B).

In Vivo Efficacy

- CNTX-0290 (1 to 30 mg/kg) significantly reversed weight loss in the rat model of MIA (Figure 2).
- Efficacy was observed up to 24 hours after administration.

In Vivo Efficacy in the Rat MIA Model of Diabetic Neuropathy

- CNTX-0290 (10 mg/kg PO) showed dose-dependent antinociceptive effects in models of diabetic neuropathy.
- Maximal efficacy was achieved at 24 hours after administration.

In Vivo Efficacy in the Rat CFA Model of Inflammatory Pain

- CNTX-0290 (1 to 30 mg/kg) significantly reversed weight loss in the rat model of CFA (Figure 3).
- Efficacy was observed up to 24 hours after administration.

In Vivo Efficacy in the Rat CFA Model of Osteoarthritis Pain

- CNTX-0290 (10 mg/kg PO) significantly reversed weight loss in the rat model of osteoarthritis.
- Efficacy was observed up to 24 hours after administration.

Partially Mediated by G Protein-Coupled Receptors

- CNTX-0290 activates the SSTR4 receptor, leading to) normalization of excitability and reduction of synaptic transmission.

Effect of Repeated Exposure

- Repeated administration and lack of toxicity after repeated exposures were investigated in the same model.
- CNTX-0290 was shown to be safe and efficacious after repeated exposures.
- No evidence of tolerance was identified.

Safety

- Safety pharmacology studies were conducted in rats and cynomolgus monkeys.
- CNTX-0290 showed a selectivity profile similar to somatostatin, and is a potent inhibitor of growth hormone and insulin.
- CNTX-0290 may be administered as a single agent, or in combination with other analgesics.

Central Nervous System Activity

- CNTX-0290 did not affect glucose tolerance (Figure 7), while octreotide significantly increased glucose levels.

Conclusion

- CNTX-0290 was not associated with central nervous system side-effects observed with standard of care therapies (Table 2).

References

Acknowledgements

The study was sponsored by Centexxion Therapeutics Corp. Becton, IA. Medical writing assistance was provided by Peloton Advantage, LLC. IDD Health company, Parsippany, NJ, and was funded by Centexxion Therapeutics Corp.